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Algorithm AS 137 

Simulating Spatial Patterns: Dependent Samples from a 
Multivariate Density 

By B. D. RIPLEY 

Department of Mathematics, Imperial College, London 

Keywords: SIMULATION; SPATIAL PATTERN; STRAUSS'S DENSITY 

LANGUAGE 

ISO Fortran 
DESCRIPTION AND PURPOSE 

Purpose 
Suppose we wish to generate samples of m points in d-dimensional space from a joint 

distribution with density p. Examples occur frequently when studying spatial patterns for 
which the normalizing constant is not known in closed form. We will assume that the density 
is symmetric in its arguments, i.e. independent of the ordering of the m random points. 

If all the marginal densities were known, the obvious way to generate samples from the 
density would be to add points in turn drawn from the appropriate conditional densities. 
However, it is often impossible to find even the marginal density of a subset of (m-1) points. 
Rejection sampling is theoretically feasible whenever the density is bounded, by M say. For a 
process on [0, 1 ]d generate m independent uniform random vectors x1, ..., x and compute 
X = p(x1, ..., xm)/M. Generate an independent uniform variable Y. If X) Y accept (x1, ..., xM) 
otherwise repeat the process. Although this process will terminate (with probability one) it 
is almost always prohibitively long. The m independent uniform random vectors may be 
replaced by a sample from any easily simulated density q, provided X is redefined as cp(x)/q(x) 
with c chosen so that P(Xs< 1) = 1. Useful choices of q for this envelope rejection technique 
are rare. 

The method used here exploits the observation that the conditional density p(x1 I x2, ...,Xm) 
is known up to a constant depending only on (x2, ..., Xm) and so may be simulated by the 
rejection technique. The algorithm is mainly to illustrate the technique; the example used is 
Strauss's density as given by Kelly and Ripley (1976). Define two points to be neighbours if 
their distance apart is less than R. Then p(x1, ..., xm) is proportional to c8 where s is the number 
of pairs of neighbours in (xl, ..., xm), and 0 < c < oo. The case c = 0 is one definition of the 
random distribution of non-overlapping spheres of radius 'R, cf. Ripley (1977, Section 3.2). 
Values of c between 0 and 1 provide a gradation between this and a "random" pattern. 

THEORY 

The algorithm works by repeating a single step in which one of the points is chosen at 
random and deleted, then replaced by a point drawn from the conditional density given the 
remaining (m-1) points. For Strauss's density this conditional density is proportional to ct, 
where t is the number of neighbour pairs which would be created if that point were added. 
If the process is in equilibrium then samples a long distance apart in time will be almost 
independent. It is not clear how one should test statistically independence of two spatial 
patterns; the algorithm take samples every 4m steps which have always proved adequately 
independent. For some applications samples could be taken much more frequently. It is 
necessary to supply a starting pattern. Ideally this should be a sample from the density p or a 
very similar density but the theory below shows that any starting pattern will do and m 
independent uniformly distributed points are usually adequate. For Strauss's density a 
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110 APPLIED STATISTICS 

suitable choice may be the distinct but very similar sequential version in which when r points 
are present the next is generated with density proportional to ct, where t is again the number 
of extra pairs of neighbours which would be created. 

It is clear from the description that the basic step describes the transition of a Markov 
process. The method is related to the Markov processes used in statistical mechanics and 
surveyed by Hastings (1970). Formally the statespace is Rmd but we can avoid technical 
complications by noting that in computing we replace this by a finite set of numbers. Thus we 
take the statespace to be those representable patterns with positive density; a finite set. The 
required distribution is an equilibrium distribution of this Markov chain; if we start with this 
distribution after dropping a point we have the marginal distribution on (mr-1) points to which 
we add a point with the necessary conditional density. The Markov chain is aperiodic, so if 
it is irreducible the distribution after m steps converges to the required distribution whatever 
the initial state (Cox and Miller, 1965, Section 3.8). Irreducibility is almost always satisfied 
but rules out densities positive only if all the points lie in the same quadrant, for example. 

EXTENSIONS 
The algorithm will still work if points are deleted in turn rather than chosen for deletion 

at random. If the state of the stochastic process is the ordered set of points (x1, ..., x.) and 
the basic step is to replace xl then relabel as (x2, ..., Xn, x1) the process is again a Markov 
chain, now of period m but with equilibrium distribution unique up to the ordering of the 
points. This modification has the advantage of ensuring that samples taken every m steps 
have no points in common. 

The density can easily be altered. A useful alternative is the family of pairwise interaction 
processes (Ripley, 1977, Section 3.4) for which 

p(xl, . * * X.)cc f h{d(xi, xj)}, P(X1 I X2 ... I Xm)CC F! h{d(xj, x0}. 
i<i j>1 

STRUCTURE 
SUBRO UTINE SIMPAT (NPT, X, Y, C, R) 

Formal parameters 
NPT Integer input: number of points 
X Real array (NPT) input: x-coordinates of initial pattern 
Y Real array (NPT) input: y-coordinates of initial pattern 
C Real input: parameter c 
R Real input: parameter R 
X Real array (NPT) output: x-coordinates of sample 
y Real array (NPT) output: y-coordinates of sample 

Failure 
No failures are indicated. The only cause should be an inadmissible set of parameters 

which should be trapped before the first call. 

Auxiliary algorithms 
SIMPAT calls a function 

FUNCTION DEN (X, Y, NPT, C, R) 
which calculates d(xl, ..., .xv) where xr = {X(r), Y(r)}. There is also a call to a function RANF 
which should return a pseudo-random number uniformly distributed on the unit interval. 
(With a suspect generator it would be desirable to use separate generators for X(l) and Y(l).) 
The statement function FA allows periodic boundary conditions. 
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RESTRICTIONS 
The parameter C may be any non-negative real number. The interaction range R is 

formally restricted only when C =0. Then the packing density p = NPT-TR2/4 must not 
exceed 0-9609 (Rogers, 1964). However, for small C and large values of R or large C and 
small values of R there will be many rejections. 

TIMING 
The main subroutine takes 0(m) steps. For most densities (including Strauss's) the function 

DEN takes 0(m) operations on each call, so 0(m2) total operations are needed. Table 1 
gives some timings for one sample in seconds for Strauss's density. The machine was the 
CDC 6600 of the University of London Computer Centre. 

TABLE 1 
Time in seconds for one sample on a CDC 6600 

NPT C R p Time 

25 0 0 05 0.049 0-08 
25 0 0.10 0.196 0 17 
25 0 0.15 0.441 0.99 
50 0 0-02 0 016 0.31 
50 0 0.04 0.063 0.38 
50 0 0.06 0-141 0.56 
50 0 0-08 0.251 1.01 
50 0 0.10 0-393 311 

100 0 0.01 0-008 1.25 
100 0 0.03 0.071 1.54 
100 0 0.06 0*283 5.82 
50 0-2 0.04 0.063 0-37 
50 0.5 0.04 0.063 0-32 
50 0-8 0-04 0-063 0-32 
50 0-2 0.08 0-251 0.71 
50 0-5 0-08 0 251 0.49 
50 0-8 0 08 0.251 0-34 

ADDITIONAL COMNuNTrS 
The efficiency of the algorithm can be improved in special cases. For the case c 0 DEN 

can be altered to return the value 0 immediately a distance less than R is found. For large 
samples the TILE algorithm of Green and Sibson (1978) may provide a more efficient way to 
count the neighbours of xl. The rejection technique for p(xl j x2, ..., x4) may possibly be made 
more efficient by envelope rejection sampling. 

The hypercube [0, 1]d may be replaced by any compact region (of positive measure) by 
generating xl uniformly in A; with a suitable density for xl A could even be unbounded. 

For c> 1 a better bound for q can be found by finding the maximum number of neighbours 
an added point could have in (x2, ..., xm), to replace m -1. Unfortunately I cannot see how to 
do this in less than 0(m2) operations. For c much larger than 1 the algorithm as given is rather 
slow. 
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112 APPLIED STATISTICS 
SUBRMUTINE SIVIPAT(NIT, X, Y, C, R) 

C 
C AIGOITHM AS 137t APPL. STATIST. (1979) VOL.28, NO.1 
C 
C GENERATE SAMPlES OF SIZE NPT FROM A BIVARIATE JOINT DENSITY 
C 

DIMENSION X(NPT), Y(NPT) 
C 

RN = NPT 
M= 4 * NPT 

C 
C MM IS THIE NUMBER OF STMES 
C 

DO 100 I = 1, M 
ID = RN * RANF(DUM) + i.0 
X(ID) = X(1) 
Y(ID = Y :1) 

20 X(1) = RANF(DUM) 
Y(1) = RANF(DUM) 
F = DEN(X, Y, N, C, R) 
IF (F .LE. RANF(DUM)) GAlr] 20 

100 CONTINUE 
RETURN 
END 

C 
FUNCTItN DEN(X, Y, N, C, RI 

C 
C ALIGRITHM AS 137.1 APPL. STATIST. (1o70) VOL.28, NO.1 
C 
C CALCULA\TES STRAUSS CONDITIONAL DENSITY. DEN IS 
C PROPORTIONAL TO C ** (NMBER OF NEIGHBOURS OF 
C THE FIRST POINT) 
C 

DIMENSIOIN X(N), Y(N) 
FA(A) = A 

C 
C FOR TORUS FA(A) AMINI (lBSf.A), 1.0 - ABS(A) 
C 

DEN = 1. 0 
RR R * R 
DO 20 I = 2, N 
Y.l = FA(X(I) - X(1)) 
YI = FA(Y(I) - Y(1)) 
IF (Xi * + + Y1 * Y1 .LT. RU) DEN = C * DE 

20 CONTINUE 
C 
C NORMALIZE BY THE MAX. OF THE DENSITY 
C 

IF (C .GT. 1.0) DEN = DEN / C ** (N - 1) 
RETURN 
END 

Remark AS R29 

Remarks on AS 110: Lp Norm Fit of a Straight Line 

By M. A. PORTER and D. J. WINSTANLEY 

Thames Polytechnic, London 

Sposito et al. (1977) give an algorithm for fitting a straight line to data by minimizing the 
L. norm j I yi- o/-xi |P, summing over i from 1 to n, for a set of n observations (xi, yi) and 
for values of p in the interval 1 <p < 2. We have found that the deletion of observations near 
the line can lead to their routine terminating before the minimum norm solution has been 
obtained. 
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